rather an ellipse, of which our earth occupies one of the foci; the consequence, therefore, is, that at certain times it approaches nearer to, and at others it recedes farther from, the earth; in astronomical language, it is at one time in apogee, at another in perigee. Now the difference between its greatest and its least distance is too considerable to be left out of consideration. In point of fact, in its apogee the moon is 247,552 miles, and in its perigee, 218,657 miles only distant; a fact which makes a difference of 28,895 miles, or more than one-ninth of the entire distance. The perigee distance, therefore, is that which ought to serve as the basis of all calculations. To the third question:— Answer.—If the shot should preserve continuously its initial velocity of 12,000 yards per second, it would require little more than nine hours to reach its destination; but, inasmuch as that initial velocity will be continually decreasing, it will occupy 300,000 seconds, that is 83hrs. 20m. in reaching the point where the attraction of the earth and moon will be in equilibrio. From this point it will fall into the moon in 50,000 seconds, or 13hrs. 53m. 20sec. It will be desirable, therefore, to discharge it 97hrs. 13m. 20sec. before the arrival of the moon at the point aimed at. Regarding question four, “At what precise moment will the moon present herself in the most favorable position, etc.?” Answer.—After what has been said above, it will be necessary, first of all, to choose the period when the moon will be in perigee, and also the moment when she will be crossing the zenith, which latter event will further diminish the entire distance by a length equal to the radius of the earth, i. e. 3,919 miles; the result of which will be that the final passage remaining to be accomplished will be 214,976 miles. But although the moon passes her perigee every month, she does not reach the zenith always at exactly the same moment. She does not appear under these two conditions simultaneously, except at long intervals of time. It will be necessary, therefore, to wait for the moment when her passage in perigee shall coincide with that in the zenith. Now, by a fortunate circumstance, on the 4th of December in the ensuing year the moon will present these two conditions. At midnight she will be in perigee, that is, at her shortest distance from the earth, and at the same moment she will be crossing the zenith. On the fifth question, “At what point in the heavens ought the cannon to be aimed?” Answer.—The preceding